Maestra

MAESTRA: MA. EUGENIA ACUÑA REYES

domingo, 1 de junio de 2014

Herramientas para verificar el funcionamiento de la red.


NETSTAT: es una herramienta de línea de comandos que muestra un listado de las conexiones activas de una computadora, tanto entrante como saliente; la información que resulta del uso del comando incluye el protocolo en uso, las tablas de ruteo, las estadísticas de las interfaces y el estado de la conexión.

IPCONFIG: El comando ipconfig nos da la información relativa a las conexiones de red en los sistemas operativos Windows.
Para ejecutarlo tenemos que ir a Incio --> Ejecutar --> poner "cmd" y luego darle a Enter. Con esto se nos abrirá una ventana de MS-DOS, entonces en la línea de comandos ponemos ipconfig y le damos a Enter. La salida de este comando nos dice principalmente la dirección IP, máscara y puerta de enlace de cada una de los adaptadores de red que tenga el equipo.

INTERFAZ GRÁFICA: La interfaz gráfica es un software que facilita la comunicación entre un programa y el usuario de este. Diciéndolo de otra manera, la interfaz gráfica es la parte del programa que ves en la pantalla (iconos, botones, etc). Por ejemplo, en el sistema operativo Windows, el escritorio y las carpetas serían la interfaz gráfica, que te permite ejecutar diversas operaciones (cambiar nombre, mover, copiar, pegar...) sin necesidad de conocer el funcionamiento interno del programa.

TRACEROUT: es una herramienta de diagnóstico de redes, presente en la mayoría de los sistemas operativos. Esta herramienta permite determinar la ruta efectuada por un paquete. El comando Traceroute se puede usar para diagramar un mapa de los routers que se encontraron entre la máquina fuente y la máquina destino. El comando Traceroute difiere según cada sistema operativo.

NETSH: es una herramienta que un administrador puede utilizar para configurar y supervisar equipos basados en Windows en un símbolo del sistema. Con la herramienta Netsh.exe puede dirigir los comandos de contexto que especifica a la aplicación auxiliar apropiada y ésta realiza entonces el comando. Una aplicación auxiliar es un archivo de Biblioteca de vínculos dinámicos (.dll) que amplía la funcionalidad de la herramienta Netsh.exe proporcionando configuración, supervisión y compatibilidad con uno o más servicios, utilidades o protocolos. La aplicación auxiliar puede utilizarse también para extender otras aplicaciones auxiliares.

NSLOOKUP: es una herramienta administrativa de la línea de comandos para probar y solucionar problemas de los servidores DNS. Esta herramienta se instala junto con el protocolo TCP/IP a través del Panel de control. En este artículo se incluyen varias sugerencias para utilizar Nslookup.exe.

NETSTAT: es una herramienta utilizada para supervisar las conexiones de red, tablas de encaminamiento, estadísticas de interfaces y asignaturas de multidifusión. Se utiliza principalmente para encontrar problemas en una red y para medir el tráfico de red como una forma de calcular el desempeño de ésta.

Modelo OSI

El Modelo OSI divide en 7 capas el proceso de transmisión de la información entre equipo informáticos, donde cada capa se encarga de ejecutar una determinada parte del proceso global.

El modelo OSI abarca una serie de eventos importantes:

-el modo en que los datos se traducen a un formato apropiado para la arquitectura de red que se esta utilizando
- El modo en que las computadoras u otro tipo de dispositivo de la red se comunican. Cuando se envíen datos tiene que existir algún tipo de mecanismo que proporcione un canal de comunicación entre el remitente y el destinatario.
- El modo en que los datos se transmiten entre los distintos dispositivos y la forma en que se resuelve la secuenciación y comprobación de errores
- El modo en que el direccionamiento lógico de los paquetes pasa a convertirse en el direccionamiento físico que proporciona la red

CAPAS

Las dos únicas capas del modelo con las que de hecho, interactúa el usuario son la primera capa, la capa Física, y la ultima capa, la capa de Aplicación,
La capa física abarca los aspectos físicos de la red (es decir, los cables, hubs y el resto de dispositivos que conforman el entorno físico de la red). Seguramente ya habrá interactuado mas de una vez con la capa Física, por ejemplo al ajustar un cable mal conectado.
La capa de aplicación proporciona la interfaz que utiliza el usuario en su computadora para enviar mensajes de correo electrónico 0 ubicar un archive en la red.



7.-Capa de Aplicación

Proporciona la interfaz y servicios q soportan las aplicaciones de usuario. También se encarga de ofrecer acceso general a la red
Esta capa suministra las herramientas q el usuario, de hecho ve. También ofrece los servicios de red relacionados con estas aplicaciones, como la gestión de mensajes, la transferencia de archivos y las consultas a base de datos.
Entre los servicios de intercambio de información q gestiona la capa de aplicación se encuentran los protocolos SMTP, Telnet, ftp, http

6.-Capa de presentación

La capa de presentación puede considerarse el traductor del modelo OSI. Esta capa toma los paquetes de la capa de aplicación y los convierte a un formato genérico que pueden leer todas las computadoras. Par ejemplo, los datos escritos en caracteres ASCII se traducirán a un formato más básico y genérico.
También se encarga de cifrar los datos así como de comprimirlos para reducir su tamaño. El paquete que crea la capa de presentación contiene los datos prácticamente con el formato con el que viajaran por las restantes capas de la pila OSI (aunque las capas siguientes Irán añadiendo elementos al paquete.

5.-La capa de sesión

La capa de sesión es la encargada de establecer el enlace de comunicación o sesión y también de finalizarla entre las computadoras emisora y receptora. Esta capa también gestiona la sesión que se establece entre ambos nodos
La capa de sesión pasa a encargarse de ubicar puntas de control en la secuencia de datos además proporciona cierta tolerancia a fallos dentro de la sesión de comunicación
Los protocolos que operan en la capa de sesión pueden proporcionar dos tipos distintos de enfoques para que los datos vayan del emisor al receptor: la comunicación orientada a la conexión y Ia comunicación sin conexión
Los protocolos orientados a la conexión que operan en la capa de sesión proporcionan un entorno donde las computadoras conectadas se ponen de acuerdo sobre los parámetros relativos a la creación de los puntos de control en los datos, mantienen un dialogo durante la transferencia de los mismos, y después terminan de forma simultanea la sesión de transferencia.

4.-La capa de transporte

La capa de transporte es la encargada de controlar el flujo de datos entre los nodos que establecen una comunicación; los datos no solo deben entregarse sin errores, sino además en la secuencia que proceda. La capa de transporte se ocupa también de evaluar el tamaño de los paquetes con el fin de que estos Tengan el tamaño requerido por las capas inferiores del conjunto de protocolos. El tamaño de los paquetes 10 dicta la arquitectura de red que se utilice.

PROTOCOLOS QUE TRABAJAN CON EL MODELO OSI

Protocolos: TCP: Los protocolos orientados a la conexión operan de forma parecida a una llamada telefónica:

UDP: El funcionamiento de los protocolos sin conexión se parece más bien a un sistema de correo regular.

3.-La capa de red

La capa de red encamina los paquetes además de ocuparse de entregarlos. La determinación de la ruta que deben seguir los datos se produce en esta capa, lo mismo que el intercambio efectivo de los mismos dentro de dicha ruta, La Capa 3 es donde las direcciones lógicas (como las direcciones IP de una computadora de red) pasan a convertirse en direcciones físicas (las direcciones de hardware de la NIC, la Tarjeta de Interfaz para Red, para esa computadora especifica).
Los routers operan precisamente en Ia capa de red y utilizan los protocolos de encaminamiento de la Capa 3 para determinar la ruta que deben seguir los paquetes de datos.

2.-La capa de enlace de datos

Cuando los paquetes de datos llegan a la capa de enlace de datos, estas pasan a ubicarse en tramas (unidades de datos), que vienen definidas por la arquitectura de red que se esta utilizando (como Ethernet, Token Ring, etc.). La capa de enlace de datos se encarga de desplazar los datos por el enlace físico de comunicación hasta el nodo receptor, e identifica cada computadora incluida en la red de acuerdo con su dirección de hardware.
La información de encabezamiento se añade a cada trama que contenga las direcciones de envió y recepción. La capa de enlace de datos también se asegura de que las tramas enviadas por el enlace físico se reciben sin error alguno. Por ello, los protocolos que operan en esta capa adjuntaran un Chequeo de Redundancia Cíclica (Cyclical Redundancy Check a CRC) al final de cada trama. EI CRC es básicamente un valor que se calcula tanto en la computadora emisora como en la receptora, Si los dos valores CRC coinciden, significa que la trama se recibió correcta e íntegramente, y no sufrió error alguno durante su transferencia.

Las subcapas del enlace de datos

La capa de enlace de datos se divide en dos subcapas, el Control Lógico del Enlace (Logical Link Control o LLC) y el Control de Acceso al Medio (Media Access Control MAC).
La subcapa de Control Lógico del Enlace establece y mantiene el enlace entre las computadoras emisora y receptora cuando los datos se desplazan por el entorno físico de la red. La subcapa LLC también proporciona Puntos de Acceso a Servicio (Servicie Access Poínos 0 SAP),

La subcapa de Control de Acceso al Medio determina la forma en que las computadoras se comunican dentro de la red, y como y donde una computadora puede acceder, de hecho, al entorno físico de la red y enviar datos.

1.-La capa física

En la capa física las tramas procedentes de la capa de enlace de datos se convierten en una secuencia única de bits que puede transmitirse por el entorno físico de la red. La capa física también determina los aspectos físicos sobre la forma en que el cableado está enganchado a la NIC de la computadora.

Arquitecturas de Red

ARQUITECTURA ETHERNET
La arquitectura Ethernet puede definirse como una red de conmutación de paquetes de acceso múltiple (medio compartido) y de difusión amplia ("Broadcast”). Esta arquitectura provee detección de errores, pero no corrección.
·         Compartido
Ethernet es un medio compartido, ya que cualquier mensaje transmitido es escuchado por todos los equipos conectados y el ancho de banda disponible es compartido por ellos. En el Ethernet compartido existen reglas para enviar los paquetes evitando conflictos y protegiendo la integridad de los datos. Los nodos en una red Ethernet transmiten paquetes cuando ellos determinan que la red no está siendo usada.

·         Dedicado o Conmutado
La topología física es la de una estrella pero organizada alrededor de un conmutador. El conmutador usa mecanismos de conmutación y filtrado. Además este sólo transmite el mensaje al puerto adecuado mientras que los otros puertos permanecerán libres para otras transmisiones que pueden ser realizadas simultáneamente.

El tráfico transmitido y recibido al no ser transferido a todos los puertos genera mayor dificultad para rastrear lo que está pasando.




ARQUITECTURA ARCNET
ARQUITECTURA ARC La red ARC net es uno de los tipos más antiguos de arquitectura más utilizado en computadoras personales. A menudo son sencillas, baratas y flexibles.
·         Tokens:
La red ARC net utiliza un token para controlar el flujo de datos. Una computadora en una red debe recolectar el token antes de transmitir información. Las computadoras en esta red están numeradas en secuencia y el token pasa por cada una en orden.
·         Hubs:
El hub es el centro de la red ARC net. Cada una de estas utiliza una estructura tipo estrella para conectar las computadoras. Existen tres tipos de hubs en la red ARC net . Los hubs pasivos simplemente conectan los segmentos de cable. Los hubs activos contienen componentes electrónicos que reproducen la señal a medida que pasa de un segmento a otro, evitando errores e interferencia. Los hubs inteligentes pueden realizar tareas rutinarias como detección de error y les permiten a los administradores de red tener más control sobre cada segmento.
·         Disponibilidad:
A pesar de que la arquitectura de la red ARC net no es popular en las nuevas redes, todavía existen muchas de este tipo. La red ARC net siempre ha sido relativamente barata y ha estado disponible durante 30 años. Muchas compañías que tienen redes más antiguas y pequeñas utilizan la red ARC net.
·         Ancho de Banda:
 Una red ARC net puede transferir información a una velocidad cercana a 2.5 mega bits por segundo (Mbps). Las versiones más nuevas, conocidas como ARC net plus, pueden hacerlo a velocidades de hasta 20 Mbps. Las redes ARC net por lo general utilizan un cable coaxial como medio de transmisión.
·         Eficiencia:
A pesar de que la red ARC net tiene un ancho de banda bajo, es un método eficiente de transferir información cuando se compara con otros tipos de arquitectura. Esta realiza poco procesamiento de información que consiste en transferirla por la red por lo general, dicha información se utiliza en redes que recolectan datos, como una planta de producción o un laboratorio.


ARQUITECTURA TOKEN RING
Es una arquitectura de red desarrollada por IBM en los años 1970 con topología física en anillo y técnica de acceso de paso de testigo, usando un frame de 3 bytes llamado token que viaja alrededor del anillo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.
IEEE 802.5
El IEEE 802.5 es un estándar por el Institute of Electrical and Electronics Engineers (IEEE), y define una red de área local LAN en configuración de anillo (Ring), con método de paso de testigo (Token) como control de acceso al medio. La velocidad de su estándar es de 4 o 16 Mbps cuando es implementado sobre cables de hilos de cobre, existen implementaciones de mayor velocidad tanto sobre hilos de cobre CDDI como sobre fibra optica FDDI la cual llega a los 100 Mbps y 200 Km de extensión.
El diseño de una red de Token Ring fue atribuido a E. E. Newhall en el año 1969. IBM publicó por primera vez su topología de Token Ring en marzo de 1982, cuando esta compañía presentó los papeles para el proyecto 802 del IEEE. IBM anunció un producto Token Ring en 1984, y en 1985 éste llegó a ser un estándar de ANSI/IEEE.
Características:
·         Utiliza una topología lógica en anillo, aunque por medio de una unidad de acceso de estación múltiple (MSAU o MAU), la red puede verse como si fuera una estrella. Tiene topología física estrella y topología lógica en anillo.
·         Utiliza cable especial apantallado, aunque el cableado también puede ser par trenzado.
·         La longitud total de la red no puede superar los 366 metros.
·         La distancia entre una computadora y el MAU no puede ser mayor que 100 metros (por la degradación de la señal después de esta distancia en un cable de par trenzado).
·         A cada MAU se pueden conectar ocho computadoras.
·         Estas redes alcanzan una velocidad máxima de transmisión que oscila entre los 4 y los 16 Mbps.
·         Posteriormente el High Speed Token Ring (HSTR) elevó la velocidad a 110 Mbps pero la mayoría de redes no la soportan.



Croquis de red

Croquis de la red del centro de computo

Tarea clase de IP


TRAZAR EL CABLEADO DE UNA RED PROPUESTA

TRAZAR EL CABLEADO DE UNA RED PROPUESTA

SISTEMA DE CABLEADO ESTRUCTURADO

El cableado estructurado es la técnica que permite cambiar, identificar y mover periféricos o equipos de una red con flexibilidad y sencillez. Una solución de cableado estructurado debe tener dos características: modularidad, que sirve para construir arquitecturas de red de mayor tamaño sin incrementar la complejidad del sistema, y flexibilidad, que permite el crecimiento no traumático de la red.
Elementos del cableado estructurado
Partiendo del subsistema de más bajo nivel jerárquico, se presenta la siguiente organización:
- Localización de cada puesto de trabajo.
 A cada puesto deben poder llegar todos los posibles medios de transmisión de la señal que requiera cada equipamiento: UTP, STP, fibra óptica, cables para el uso de transceptores y balums, etcétera.
- Subsistema horizontal o de planta. 
Es recomendable la instalación de una canaleta o un subsuelo por el que llevar los sistemas de cableado a cada puesto. Las exigencias de ancho de banda pueden requerir el uso de dispositivos especiales para conmutar paquetes de red, o concentrar y repartir el cableado en estrella. En este nivel se pueden utilizar todos los tipos de cableados mencionados: coaxial, UTP, STP, fibra, etc., aunque alguno de ellos, como el coaxial, presentan problemas por su facilidad de ruptura o su fragilidad, especialmente en los puntos de inserción de [t], con la consiguiente caída de toda la red. Sólo si el sistema se compone de un número reducido de puestos, el cable coaxial puede compensar por su facilidad de instalación. Además, no requiere ningún dispositivo activo o pasivo para que la red comience a funcionar. Subsistema distribuidor o administrador. Se pueden incluir aquí los racks, los distribuidores de red con sus latiguillos, etcétera.
Subsistema vertical o backbone. 
Este subsistema está encargado de comunicar todos los subsistemas horizontales por lo que requiere de medios de transmisión de señal con un ancho de banda elevado y de elevada protección. Para confeccionar un backbone se puede utilizar: cable coaxial fino o grueso (10 Mbps), fibra óptica u otro tipo de medios de transmisión de alta velocidad. También se pueden utilizar cables de pares, pero siempre en configuración de estrella utilizando concentradores especiales para ello. Los backbones más modernos se construyen con tecnología ATM, redes FDDI o Gigabyte Ethernet. Este tipo de comunicaciones es ideal para su uso en instalaciones que requieran de aplicaciones multimedia.
- Subsistema de campus.
 Extiende la red de área local al entorno de varios edificios, por tanto, en cuanto a su extensión se parece a una red MAN, pero mantiene toda la funcionalidad de una red de área local. El medio de transmisión utilizado con mayor frecuencia es la fibra óptica con topología de doble anillo.
- Cuartos de entrada de servicios, telecomunicaciones y equipos.
 Son los lugares apropiados para recoger las entradas de los servicios externos a la organización (líneas telefónicas, accesos a Internet, recepción de TV por cable o satélite, etc.), la instalación de la maquinaria de comunicaciones y para los equipamientos informáticos centralizados. En algunas organizaciones existen los tres tipos de espacios; en otras, el cuarto de equipos incluye al de telecomunicaciones y el de entrada de servicios es sustituido por un armario receptor. Aunque no es estrictamente indispensable, se recomienda un cuarto de comunicaciones por cada planta.
La especificación de cableado estructurado exige que los cables no superen los 90 m de longitud, teniendo en cuenta que se pueden añadir 10 m más para los latiguillos inicial y final, de modo que el canal de principio a fin no supere los 100 m, que es la distancia permitida por los cables UTP de categoría 5e. También se especifican, por ejemplo, las distancias que hay que dejar alrededor de los armarios para que se pueda trabajar cómodamente en ellos. Los estándares más comunes sobre cableado estructurado son en ANSI/TIA/EIA-568 y ANSI/TIA/EIA-569. Los armarios y distribuidores deben cumplir el estándar ANSI/EIA-310.

Los cambios que se deben realizar en las instalaciones de red, especialmente en su cableado son frecuentes debido a la evolución de los equipos y a las necesidades de los usuarios de la red. Esto nos lleva a tener en cuenta otro factor importante: la flexibilidad. Un sistema de cableado bien diseñado debe tener al menos estas dos cualidades: seguridad y flexibilidad. A estos parámetros se le pueden añadir otros, menos exigentes desde el punto de vista del diseño de la red, como son el coste económico, la facilidad de instalación, etcétera

domingo, 30 de marzo de 2014

Tecnologías y sistemas de conmutación y enrutamiento.

  • Concentrador 
    Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos. Son la base para las redes de topología tipo estrella, También es llamado repetidor multipuerto.
    Existen 3 clases de hubs, las cuales son:

    - Pasivo: No necesita energía eléctrica. Se dedica a la interconexión.
    - Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal.
    - Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.



    Visto lo anterior podemos sacar las siguientes conclusiones:

    1. El concentrador envía información todos los ordenadores que están conectados a él. Sin importar que haya un solo destinatario de la información.

    2. Este tráfico genera más probabilidades de colisión. Una colisión se produce cuando un ordenador envía información de forma simultánea que otro ordenador. Al chocar los dos mensajes se pierden y es necesario retransmitir.

    3. Un concentrador no tiene capacidad de almacenar nada.


    4. Su precio es barato. Añade retardos derivados de la transmisión del paquete a todos los equipos de la red (incluyendo los que no son destinatarios del mismo).
  • Repetidor
    Un repetidor es un dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.



    En telecomunicación el término repetidor tiene el siguiente significado:

    “Dispositivo analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital).”

    En el caso de señales digitales el repetidor se suele denominar regenerador ya que, de hecho, la señal de salida es una señal regenerada a partir de la de entrada.
    Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz.
  • Switch
    Switch es un dispositivo electrónico de interconexión de redes de ordenadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI.
    Un conmutador interconecta dos o más segmentos de red, pasando datos de un segmento a otro, de acuerdo con la dirección de destino de los datagramas en la red. Fusionando las redes en una sola.



    Conexiones en un Switch Ethernet:
    Los conmutadores poseen la capacidad de aprender y almacenar las direcciones de red de nivel 2 (direcciones MAC) de los dispositivos alcanzables a través de cada uno de sus puertos.

    Por ejemplo, un equipo conectado directamente a un puerto de un conmutador provoca que el conmutador almacene su dirección MAC. Esto permite que, a diferencia de los concentradores o hubs, la información dirigida a un dispositivo vaya desde el puerto origen al puerto de destino.

  • Router
    Enrutador (en inglés:  router), ruteador o encaminador es un dispositivo de hardware para interconexión de red de computadoras que opera en la capa tres (nivel de red). Este dispositivo permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.



    Los enrutadores operan en dos planos diferentes:

    Plano de Control, en la que el enrutador se informa de que interfaz de salida es la más apropiada para la transmisión de paquetes específicos a determinados destinos.

    Plano de Reenvío, que se encarga en la práctica del proceso de envío de un paquete recibido en una interfaz lógica a otra interfaz lógica saliente. Comúnmente los enrutadores se implementan también como puertas de acceso a Internet, usándose normalmente en casas y oficinas pequeñas.